Reference
[1] Zhang, C., Yang, K., Hu, S., Wang, Z., Li, G., Sun, Y.E., Zhang, C., Zhang, Z., Liu, A., Zhu, S., Chang, X., Zhang, J., Yin, F., Liang, Y., & Yang, Y. (2023). ProAgent: Building Proactive Cooperative Agents with Large Language Models. AAAI Conference on Artificial Intelligence.
[2] Hong, S., Zheng, X., Chen, J.P., Cheng, Y., Zhang, C., Wang, Z., Yau, S.K., Lin, Z.H., Zhou, L., Ran, C., Xiao, L., & Wu, C. (2024). MetaGPT: Meta Programming for Multi-Agent Collaborative Framework. ICLR 2024.
[3] Chen, S., Zhang, Z., Yang, Y., & Du, Y. (2024). STAS: Spatial-Temporal Return Decomposition for Solving Sparse Rewards Problems in Multi-agent Reinforcement Learning. AAAI Conference on Artificial Intelligence.
[4] Csiszár, I. (1975). $I$-Divergence Geometry of Probability Distributions and Minimization Problems. Annals of Probability, 3, 146-158.
[5] Phong, L.T., Aono, Y., Hayashi, T., Wang, L., & Moriai, S. (2018). Privacy-Preserving Deep Learning via Additively Homomorphic Encryption. IEEE Transactions on Information Forensics and Security, 13, 1333-1345.
[6] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S., Ramage, D., Segal, A., & Seth, K. (2017). Practical Secure Aggregation for Privacy-Preserving Machine Learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
[7] Wang, J.T., Zhu, Y., Wang, Y., Jia, R., & Mittal, P. (2023). Threshold KNN-Shapley: A Linear-Time and Privacy-Friendly Approach to Data Valuation. ArXiv, abs/2308.15709
[8] Li, Weida and Yaoliang Yu. “One Sample Fits All: Approximating All Probabilistic Values Simultaneously and Efficiently.” NeurIPS 2024
[9] Li, Weida and Yaoliang Yu. “Faster Approximation of Probabilistic and Distributional Values via Least Squares.” International Conference on Learning Representations (2024).
Last updated